Negative Curves of Small Genus on Surfaces
نویسنده
چکیده
Let X be an irreducible smooth geometrically integral projective surface over a field. In this paper we give an effective bound in terms of the Neron–Severi rank ρ(X) of X for the number of irreducible curves C on X with negative self-intersection and geometric genus less than b1(X)/4, where b1(X) is the first étale Betti number of X. The proof involves a hyperbolic analog of the theory of spherical codes.
منابع مشابه
The Space of Embedded Minimal Surfaces of Fixed Genus in a 3-manifold V; Fixed Genus
This paper is the fifth and final in a series on embedded minimal surfaces. Following our earlier papers on disks, we prove here two main structure theorems for nonsimply connected embedded minimal surfaces of any given fixed genus. The first of these asserts that any such surface without small necks can be obtained by gluing together two oppositely–oriented double spiral staircases; see Figure...
متن کاملQuadric Rank Loci on Moduli of Curves and K3 Surfaces
Assuming that φ : Sym(E) → F is a morphism of vector bundles on a variety X, we compute the class of the locus in X where Ker(φ) contains a quadric of prescribed rank. Our formulas have many applications to moduli theory: (i) we find a simple proof of Borcherds’ result that the Hodge class on the moduli space of polarized K3 surfaces of fixed genus is of Noether-Lefschetz type, (ii) we construc...
متن کاملA descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملBilliards and Teichmüller curves on Hilbert modular surfaces
This paper exhibits an infinite collection of algebraic curves isometrically embedded in the moduli space of Riemann surfaces of genus two. These Teichmüller curves lie on Hilbert modular surfaces parameterizing Abelian varieties with real multiplication. Explicit examples, constructed from L-shaped polygons, give billiard tables with optimal dynamical properties.
متن کاملConstructing pairing-friendly hyperelliptic curves using Weil restriction
A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become ...
متن کامل